3D Object Extraction Using LIDAR data & Orthoimages

Hetti Arachchige Nalani

Department of Cartography, Photogrammetry, Remote Sensing & GIS Faculty of Geomatics, Sabaragamuwa University of Sri Lanka

Overview

- Introduction
- Purpose of the Study
- Project Approach
- Testing and Result
- Conclusion and Future Work

Introduction

3D Object Extraction: Collect 3D data/ information from the Earth surface

Aspects ...

- analysis of Geographic data
- creation of 3D models of Earth surface
- many aspectstechnical, social, economical, engineering ...

Aim and Objectives

- application areas are increasing
- low cost algorithms

Main aim: 3D object extraction (focus buildings)

Objectives:

- Detect the object outline, ridges
- Create models for the objects
- Visualization of created model
- user friendly functionalities

LiDAR Systems

Light Detection and Ranging (LiDAR) or Airborne Laser Scanning (ALS)

- most accurate and expedient and cost effective ways of capturing elevation data
- Penetrating vegetation
- But, not easy to detect the precise boundary: limited planimetric resolution (Maas, 1999; Brenner and Haala, 1999; Weidner and Förstner, 1995)

LiDAR Systems

First & Last pulse data (Source: Alharthy and Bethel, 2003)

First pulse & last pulse intensity image

Ortholmages & True ortholmages

- the relief displacements caused by perspective projection are removed by taking the DTM into account during the rectification process.
- the resulting orthophoto is shown in Parallel (orthogonal) projection and at a constant scale.

(Source: S.S.Siribounma, 2005)

Ortholmages & True ortholmages

Orthogonal Projection Using DSM – True Orthoimages

(Source: M. Ettarid, 2005)

Background Information

Available tools/technologies?

- **>** ...
- Some few specialized systems with LIDAR image
- most, based on the 2D ground plans
- geometry and image processing techniques
- complexity/ high density objects, limits

Project Approach

Methodology: Building Outlines extraction

- Remove NaN values in LIDAR data
- Digitize object in ortho image: C,R

$$\begin{pmatrix} X_T \\ Y_T \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \bullet \begin{pmatrix} C \\ R \end{pmatrix} + \begin{pmatrix} X_O \\ Y_O \end{pmatrix}$$
Transformation parameters

Measure elevation data and ground height from LIDAR: Z_T , H_q

Target coordinates of object: X_T, Y_T, Z_T

Ground height: H_g

Methodology: Roof Reconstruction

- Height condition: all group of eaves have a same height: (same also for ridges)
- Rectangularity condition: right angle at roof corners

$$\overline{Z} = \frac{\sum_{i=1}^{n} Z_{i}}{n}$$

$$(x_{i+1}, y_{i+1})$$

$$\text{Condition (90 deg)}$$

$$\text{tolerance parameter} = \pm 4^{\circ}$$

$$(x_{i}, y_{i})$$

- Roof Topology: Topology describes the relationship of nodes, lines, faces/polygon
 - Minimum distance to the ridge point from eaves
 - > Every two adjacent boundary points are always part of a face

Methodology: Building Reconstruction

- Building Topology:
 - Eave points projected to the ground & create faces (building part below the roof)

Methodology: Create 3D Objects

- Visualize in vrml or AutoCAD
 - BREP: Building volume is defined indirectly by a set of faces
 - Add roof model
 - Output as closed 3D space in vrml and AutoCAD

Results

- Digitized objects in orthoimage (2D)
- Super impose objects in LIDAR image (2D)
- > 3D model in VRML
- ➤ 3D model in VRML with roof texture
- 3D model in AutoCAD

Results

```
Project Data information
                                     E:\GUI\working_dir\HFT_project
  Project Date
                                          01-Mar-2007
  Ortho image
                             : E:\GUI\Data\OrthoImages\1_hft_andAround.tif
  Refernce Data
   Pixel size in \times direction: 0.20
   Rotation in × direction : 0.00
   Rotation in Y direction : 0.00
   Pixel size in Y direction: -0.20
Shift value in X direction: 32512208.30
   Shift Value in Y direction: 5403381.10
   LIDAR image
                               : E:\GUI\Data\hft\hft_around_new.mat
   Refernce Data
   Pixel size in × direction : 0.50
Rotation in × direction : 0.00
   Rotation in Y direction : 0.00
   Pixel size in Y direction: -0.50
   Shift value in × direction: 32512500.75
Shift value in Y direction: 5403499.25
       Deatil of all connected faces in object
Object Type : Building with flat roof type
Line Properties : Color= g, Marker Type= +, Line Width= 1, Line style= -
               Object Coordinates
              × coordintes
                                   Y coordinates
                                                         Z coordinates
              ( meters)
32512686.179
                                      (meters)
                                                         (meters)
                                      5403112.908
                                                         `308.930
              32512700.000
                                      5403119.400
                                                          308.930
              32512678.712
                                      5403164.722
                                                          308.930
              32512664.892
                                      5403158.231
                                                          308.930
                                     5403112.908
                                                          300.260
              32512686.179
              32512700.000
                                     5403119.400
                                                          300.260
              32512678.712
                                     5403164.722
                                                          300.260
              32512664.892
                                     5403158.231
                                                          300.260
               Face set of object - Topology data
 Face 1: 1, 2, 6, 5, Face 2: 2, 3, 7, 6,
```

ASCII:

Conclusion and Future work

Test Result analysis:

- Accuracy investigation not in the focus of this research
- rough estimates (for given test site)
 - horizontal accuracy 0,2 m (= ortho image pixel size): if boundary is not well defined in the ortho image -> 1m
 - vertical accuracy 0,2 0,5 m: if boundary is not well defined -> 1-5 m

Benefits:

- Non photogrammetrists can measure 3D objects with this tool
- DXF output, useable in GIS/CAD/Visualization environments

Conclusion and Future work

Problems:

- Geometry error (height) in shed roof building
- > Failure, if roof type is not available in OET(fix)
- Some details are missing: chimney
- Offset between True ortho image and LIDAR data
- Unsharp (or not available) borders in the ortho image: difficult to mod 3D Object Extraction

Conclusion and Future work

Improvements:

- Improve the quality of the true orthophotos
- Extend for additional type of roof structures
- Automatic process for object detection is essential
- Improve geometrical inconsistencies originating from small gaps or overlap between adjacent building for visualization
- Include façade texturing and Extend for other objects
- Editing capabilities needed, read external data source

Thank you